- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Heiss, James_W (2)
-
Boufadel, Michel_C (1)
-
Geng, Xiaolong (1)
-
Li, Hailong (1)
-
Michael, Holly_A (1)
-
Olorunsaye, Olasunkanmi (1)
-
Wang, Xuejing (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Saltwater‐freshwater mixing zones in beach aquifers support biogeochemical reactions that moderate chemical loads in fresh groundwater discharging to marine ecosystems. Existing laboratory and numerical modeling studies have demonstrated that fluid density gradients in the mixing zone can lead to free convection and the formation of density instabilities, or salt fingers, under a range of hydrologic, morphologic, and hydrogeologic conditions. However, salt fingers have rarely been observed in real‐world beach aquifers despite a growing body of field studies investigating intertidal mixing zones. In this study, we used geostatistical methods to generate randomly distributed assemblages of fine and medium sand and incorporated those geologic realizations into variable‐density variably‐saturated flow and salt transport simulations to explore the influence of geologic structure on mixing zone stability in tidally‐influenced beaches. Ensemble‐averaged model results show that geologic heterogeneity inhibits salt finger formation and promotes a stable intertidal mixing zone due to enhanced dispersion. This effect is highest for high degrees of heterogeneity and for more laterally connected geologic architecture. Compared to hydraulically equivalent homogeneous models, sediments with moderate to high heterogeneity produce mixing zones that are on average 19%–29% smaller and 3–10 times more stable due to the absence of the downward convection and seaward movement of salt fingers. The models indicate that geologic heterogeneity may explain the lack of field observations of salt fingers in real‐world intertidal mixing zones. The findings have implications for predicting the onset of free convection in beaches and for understanding intertidal pore water biogeochemistry and chemical fluxes to the ocean.more » « less
-
Geng, Xiaolong; Michael, Holly_A; Heiss, James_W; Boufadel, Michel_C; Li, Hailong; Wang, Xuejing (, Water Resources Research)Abstract The interactions between the atmosphere, ocean, and beach in the swash zone are dynamic, influencing water flux and solute exchange across the land‐sea interface. This study employs groundwater simulations to examine the combined effects of waves and evaporation on subsurface flow and salinity dynamics in a shallow beach environment. Our simulations reveal that wave motion generates a saline plume beneath the swash zone, where evaporation induces hypersalinity near the sand surface. This leads to the formation of a hypersaline plume beneath the swash zone during periods of wave recession, which extends vertically downward to a maximum depth of 30 cm, driven by the resulting vertical density gradients. This hypersaline plume moves approximately 2 m landward to the top of the swash zone and down the beachface due to wave‐induced seawater infiltration and is subsequently diluted by the surrounding saline groundwater. Furthermore, swash motion increases near‐surface moisture, leading to an elevated evaporation rate, with dynamic fluctuations in both moisture and evaporation rate due to high‐frequency surface inundation caused by individual waves. Notably, the highest evaporation rates on the swash zone surface do not always correspond to the greatest elevations of salt concentration within the swash zone. This is because optimal moisture is also required—neither too low to impede evaporation nor too high to dilute accumulated salt near the surface. These insights are crucial for enhancing our understanding of coastal groundwater flow, biogeochemical conditions, and the subsequent nutrient cycling and contaminant transport in coastal zones.more » « less
An official website of the United States government
